Introduction to Management Information Systems

Databases

Data Resource Management

- understand what is a database and why is used to store data;
- understand how a relational database uses keys and relationships to link data between tables
- explain entity relationship (ER) diagrams and how they are used for database design
- explain the use of SQL for both data definition and data manipulation

What is a database?

A database is a logically organized collection of related data designed and built for a specific purpose

databases

- large companies stored large quantities of data
- very expensive computerized systems
- storage systems

then

- home users (PCs)
- store data in files, in folders
- store data in spreadsheets

databases

- small business (SME)
 - employees
 - stock
 - ► sales
 - customers
- ▶ or just for personal use e.g. hobbies

databases

need

- small scale database management system (e.g. Access)
- cost effective
- easy to use
- suitable for a purpose
- scalable
- web-enabled
- use with programming languages

relational databases

- an organized collection of data in tables
- a table has columns and rows
- a row a record
 - ▶ e.g. a book, a student
- a column a detail about a record
 - e.g. ISBN, title, author, student number, student name, student date of birth

relational databases

create and maintain tables

- use a Data Definition Language (DDL)
 - e.g. Structured Query Language (SQL)

access data

- use a Data Manipulation Language (DML)
 - e.g. Structured Query Language (SQL)

relational databases

- interact with the database
- perform database operations
- ▶ add, update, delete, retrieve
- use SQL
- use an SQL engine (inside an DBMS)
- e.g. SQLite, MySQL

web databases

- example an online retailer
 - HTML documents
 - stock, prices, catalog, inventory control
 - ordering processing system
- web application
 - ► user query & orders
 - application takes query, connects with the ordering system
 - connects with the database

Database Systems

hierarchy

Data is stored hierarchically for easier storage and retrieval

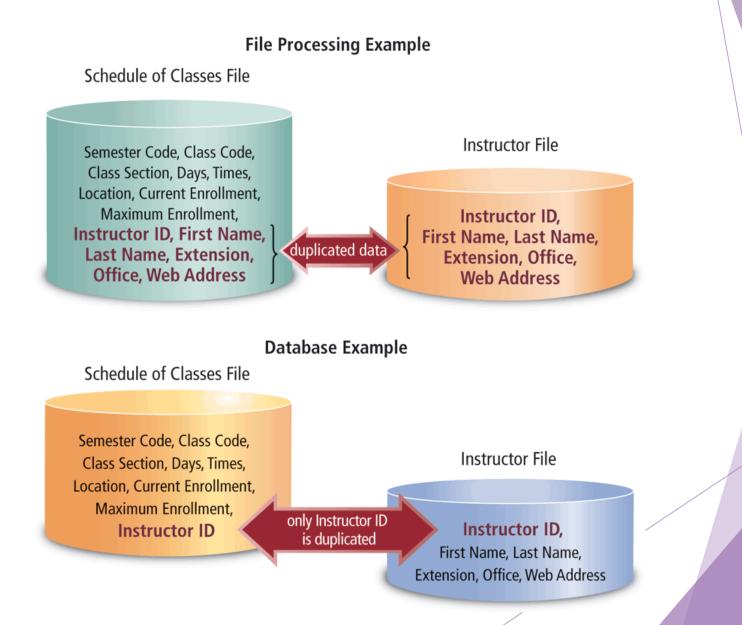
- Database
- Files (Tables)
- Records
- Field

Bit

- Character

has tables or files

- collections of related records
- collections of related fields
- unit of data containing 1 or more characters
- a letter, number or special character made of bits
- 0 or 1

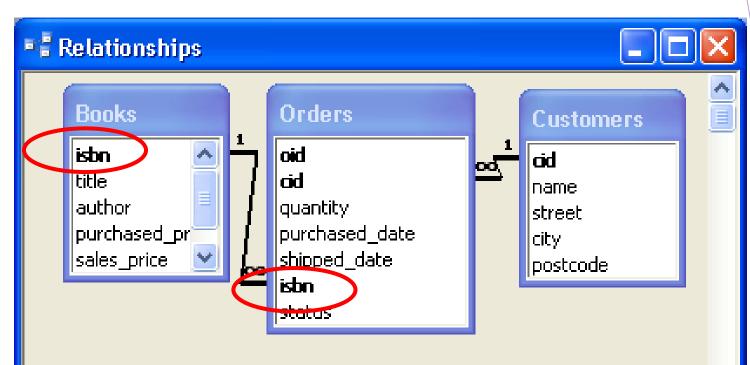

data hierarchy

	Type of data	Contains	Example			
	Database	Several files	<i>Your personal database</i> Friends' addresses file, CD titles file, Term papers file, etc.			
	File	Several records	<i>Friends' addresses file</i> Bierce, Ambrose 0001; London, Jack 0234; Stevenson, Robert L. 0081; etc.			
	Record	Several fields	Ambrose Bierce's name and address 13 Fallaway St. San Francisco, CA 94123			
	Field	Characters (bytes)	<i>First name field</i> Ambrose			
	Character	Bits (0 or 1)	<i>Letter S</i> 1110 0010			
Bierce 13 Fallaway St. San Francisco Cheminal						
Becord						

Primary Keys

- Primary keys must be unique
- identifies a record
- e.g.
 - passport number
 - student id number
 - social security number
- Numbers
 - faster access

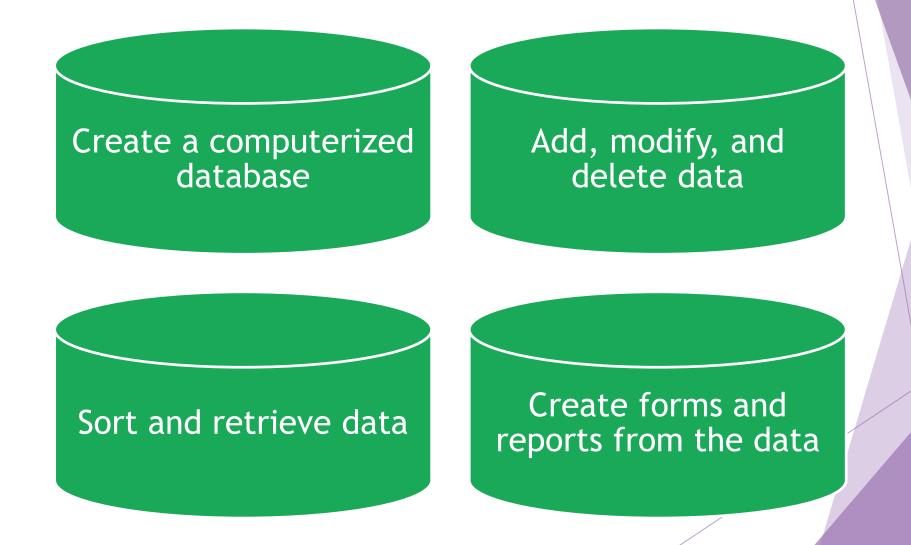
File Processing Versus Databases


Foreign Keys

Foreign keys are primary keys in another table Keys represent the relationship between tables

e.g.

- course table
- foreign key = student id number
- student id number is the primary key in the student table
- Same format in both tables (referential integrity)


Managing Files: Basic Concepts

This example shows a sample database in Microsoft Access. Books is a table. **isbn** is the primary key of the Books table. **isbn** is also a foreign key in the Orders table.

ć I IIII

Database Management System (DBMS)

Database Management Systems

Reduced data redundancy

- No duplication
- Improved data integrity
 - Means the data is accurate, up to date

Increased security

• Limit who can create, read, update, and delete

Ease of data maintenance

- validation, backup,
- procedures for data inserting, updating, and deletion

Database Management Systems

Popular Database Management Systems

Database	Manufacturer	Computer Type
Access	Microsoft Corporation	Personal computer, server, mobile devices
Adabas	Software AG	Server, mainframe
D ³	Raining Data	Personal computer, server
DB2	IBM Corporation	Personal computer, server, mainframe
Essbase	Oracle Corporation	Personal computer, server, mobile devices
FastObjects	Versant Corporation	Personal computer, server
FileMaker	FileMaker, Inc.	Personal computer, server
GemFire	GemStone Systems	Server
Informix	IBM Corporation	Personal computer, server, mainframe
Ingres	Ingres Corporation	Personal computer, server, mainframe
InterBaseSMP	Embarcadero Technologies	Personal computer, server
KE Texpress	KE Software, Inc.	Personal computer, server
MySQL	Oracle Corporation	Personal computer, server
ObjectStore	Progress Software Corporation	Personal computer, server
Oracle Database	Oracle Corporation	Personal computer, server, mainframe, mobile devices
SQL Server	Microsoft Corporation	Server, personal computer
SQL Server Compact Edition	Microsoft Corporation	Mobile devices
Sybase	Sybase Inc.	Personal computer, server, mobile devices
Teradata Database	Teradata	Server
Versant	Versant Corporation	Personal computer, server
Visual FoxPro	Microsoft Corporation	Personal computer, server

Database Administrator (DBA)

Ensures the database's

- Recoverability
- Integrity
- Security
- Availability
- Reliability
- Performance

Database Models

Hierarchical database

Fields or records are arranged in a family tree, with child records subordinate to parent or higher-level records

Network database

Like a hierarchical database, but each child record can have more than one parent record

Relational database

Relates, or connects, data in different files using a key

Object-oriented database

Uses objects (software written in small, reusable chunks) as elements within database files

Multidimensional database

Models data as facts, dimensions, or numerical measures for use in the interactive analysis of large amounts of data Data Models

Conceptual Data Model: what the system contains

Logical Data Model: how the system should be implemented regardless of the DBMS

Physical Data Model: how the system will be implemented using a specific DBMS system.

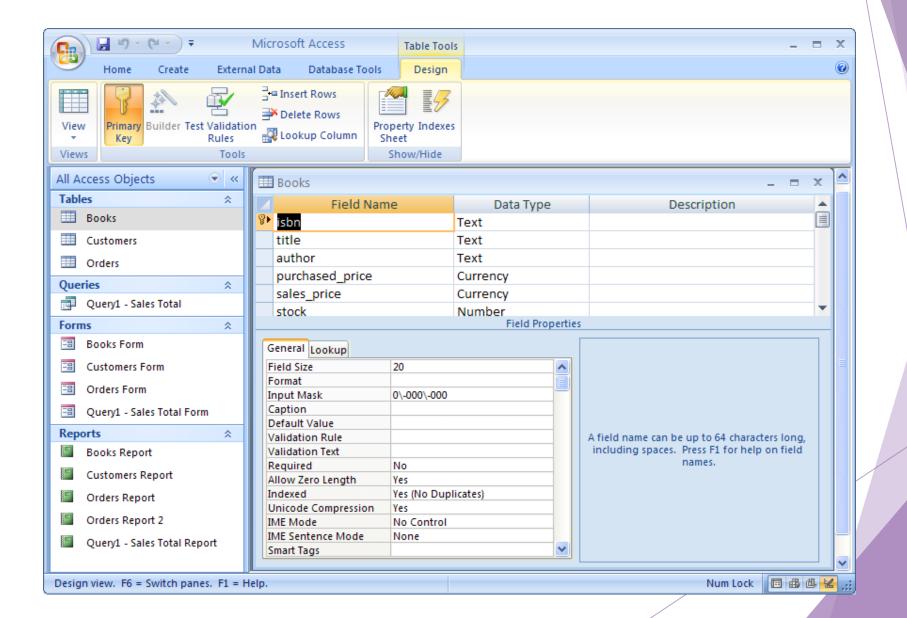
Database Example: Microsoft Access

Outline

Microsoft Access Objects:

- 1. Tables
- 2. Queries

also has


Forms

Reports

The Database Window

Home Create Extern	Microsoft Access Table Tools					×
View Dacte		Records	Fit Form	Switch Windows + /indow	d dac d d c → → Find	
All Access Objects 🔍 « Tables 🔅						^
Books	Books					
Customers	<mark>∕ isbn -</mark> title	author	purchased_r -	sales_price 🔻	stock 👻	Γ.
Orders	🕀 🕀 0-000-111 Thai Nitan	P San	150.00	200.00	10	
Queries	🗉 0-000-222 Thai Elephan	t Pop	250.00	300.00	20	
🗐 Query1 - Sales Total	1 0-000-333 Thal Ants	San	200.00		5	
Forms ×	*		0.00	0.00	0	
Books Form						
Customers Form						
Orders Form						
😑 Query1 - Sales Total Form						_
Reports *						
Books Report						
Customers Report						
Orders Report						
Orders Report 2						
Query1 - Sales Total Report						~
	<				>	
Datasheet View	p			Num Loo	ck 🖪 🖽 🖗 🤤	-

Design View

Primary Key

- Every record must have a primary key
- ▶ a different value for that particular field
- will be noted with a key image to the left

🖽 Books			
	Field Name	Da	ata Type
😵)sbn		Text	~
		-	

AutoNumber - automatically assigned unique integer Field Name -

- should represent the contents of the field such as "isbn", "title", "author"
- not exceed 64 characters in length and may include spaces

Data Types

Text - default type

 allows any combination of letters and numbers up to a max of 255 characters

Number - any number

Date/Time - A date, time, or both

Yes/No - true/false, yes/no, on/off, or other boolean values

Memo - A text type

stores up to 64,000 characters

Currency - monetary values

- can include a dollar sign (\$)
- can set decimal and comma positions

Number field size

Byte integers between 1 - 255 Integer integers between -32,768 and 32,768 Long Integer (default)

integers between -2 billion and 2 billion

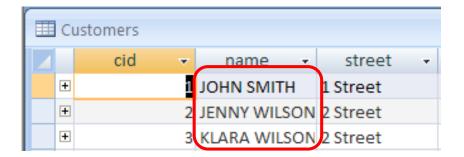
Single or float - single-precision floating-point number

up to 7 dp (32 bits)

Double - double-precision floating-point number

up to 15 dp (64 bits)

Decimal - number that allows decimal places


- up to 28 dp
- bigger numbers than long integer
- memory usage high
- errors e.g. order

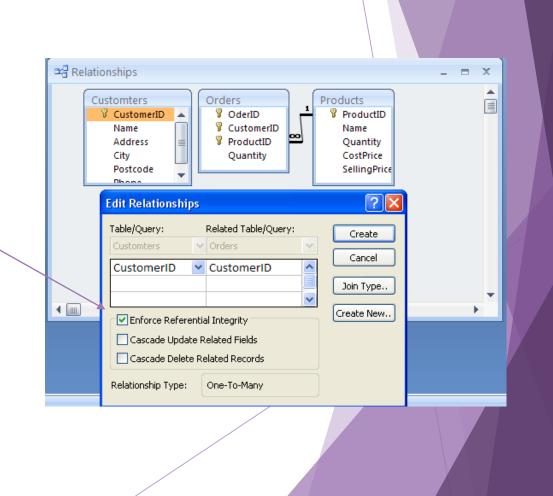
Field Format

Symbol	Description
<	Force all characters to lowercase
>	Force all characters to uppercase

Field Format

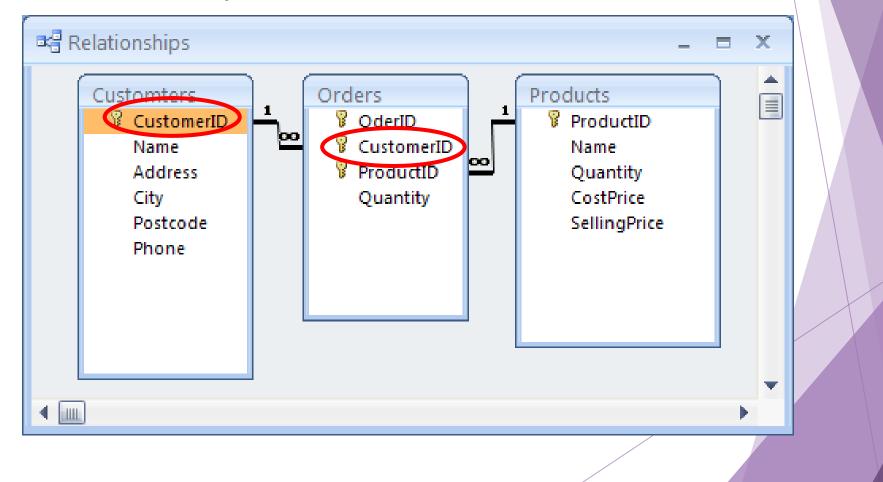
Force all characters in the Name field to be display in uppercase.

	Customers	
	Field Name	Data Type
P	cid	AutoNumber
	name	Text
	street	Text
	city	Tovt
F	Seneral Lookup Field Size 50 Format >	Field Propertie


Input Mask

Character	Description	Input Mask	Sample Value
0	Digit (0 to 9, entry required, plus [+] and minus [–] signs not allowed)	(000) 000-0000	(206) 555-0248
9	Digit or space (entry not required, plus and minus signs not allowed)	(999) 999-9999	(206) 555-024

Relationships

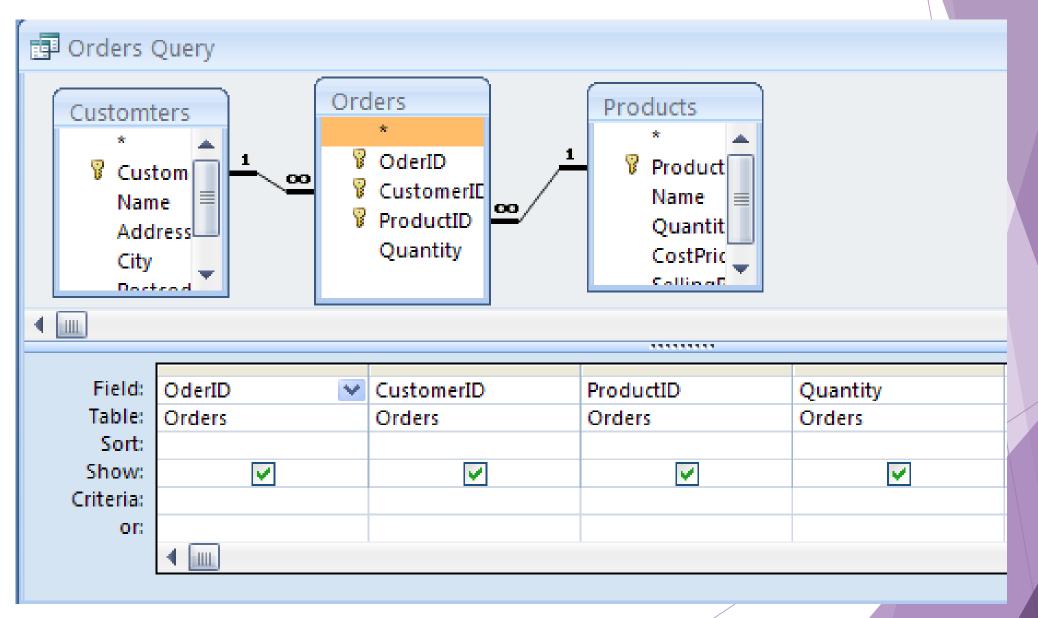

Enforce Referential Integrity

- ensures that the relationships are valid and
- data is not deleted when data is added, edited, or deleted

Relationships

7. A line now connects the two fields in the Relationships window

Database Management Systems


A query language

consists of simple, English-like statements that allow users to specify the data to display, print, or store

Query by Example (QBE)

provides a GUI to assist users with retrieving data

Query by example

Structured Query Language (SQL)

Data Definition Language

- A DDL is a language used to define data structures and modify data.
- used to add, remove, or modify tables within in a database
- used in database applications
- considered a subset of SQL
- can be other than SQL

tables

CREATE TABLE items_ordered (

orderID integer primary key,

customerID float,

order_date timestamp,

item varchar (255),

quantity float check (quantity>=0),

price float,

FOREIGN KEY (customerid) REFERENCES customers(customerid)

);

constraints

```
CREATE TABLE myemployee (
```

```
ID integer primary key autoincrement,
```

```
firstname varchar (30),
```

```
lastname varchar (50),
```

```
title varchar (30),
```

```
age number (3) check (age>=18),
```

```
salary number (10, 2) check (salary >= 10000)
```

);

Data Manipulation Language

- deals with data manipulation
- used to store, modify, retrieve, delete and update data in a database
- includes most common SQL statements
- ▶ e.g. SELECT, INSERT, UPDATE, DELETE

Select

SELECT <attribute list>
FROM
WHERE <condition>

what you want to see (columns)
from where (tables)
which rows (rows e.g. where id>100)

INSERT into employee

values ('richard','k','marini', '653298653', '30-dec-52','98 oak forest,katy,tx', 'm', 37000,'987654321', 4)

INSERT into employee (fname, lname, ssn) values ('richard', 'marini', '653298653')

UPDATE

UPDATE Employees SET City = 'Newark' WHERE ID = 4;

UPDATE Employees SET Salary = Salary * 1.1 WHERE Age > 25;

DELETE

DELETE from employee where id=101;

DELETE from employee;

not same as REMOVE employee Referential integrity

Items_ordered uses a customer id that does not exist SQL error: foreign key constraint failed Update table with an incorrect value from another table SQL error: foreign key constraint failed Items_ordered has items by a customer, and you try to delete the customer

SQL error: foreign key constraint failed

Delete the items_ordered by a customer then the customer

noSQL

Not only SQL

Most NOSQL systems are distributed databases or distributed storage systems

Focus on semi-structured data storage, high performance, availability, data replication, and scalability

Introduction

- NOSQL systems focus on storage of "big data"
- Typical applications that use NOSQL
 - Social media
 - Web links
 - User profiles
 - Marketing and sales
 - Posts and tweets
 - Road maps and spatial data
 - ► Email

Introduction to NOSQL Systems (cont'd.)

NOSQL characteristics related to distributed databases and distributed systems

- Scalability
- Availability, replication, and eventual consistency
- Replication models
 - Master-slave
 - Master-master
- Sharding of files
- High performance data access

Introduction to NOSQL Systems (cont'd.)

- NOSQL characteristics related to data models and query languages
 - Schema not required
 - Less powerful query languages
 - Versioning

Categories of NOSQL Systems

- Document-based NOSQL systems
- NOSQL key-value stores
- Column-based or wide column NOSQL systems
- Graph-based NOSQL systems
- Hybrid NOSQL systems
- Object databases
- XML databases

NOSQL Systems

- Document stores
 - Collections of similar documents
- Individual documents resemble complex objects or XML documents
 - Documents are self-describing
 - Can have different data elements
- Documents can be specified in various formats
 - ► XML
 - ► JSON

XML & JSON

Databases function as data sources for Web applications HTML

► Used in static Web pages

XML, JSON

- Self-describing documents
- Dynamic Web pages

<?xml version="1.0" encoding="UTF-8" ?>

- «Race date='2010-12-31' name='New Years Meet'>
- «Course»

<CourseName>The new track</CourseName> <Address>Track Road 123</Address>

- </Course>
- dHorses>
- «Horse Name="Bonfire">
 - <Value>5000</Value>
 - <DateOfBirth>1988-01-02</DateOfBirth>
 - <Gender>M</Gender>
 - </Horse>
- «Horse Name="Faithfull Dobbin"> «Value>3500 «/Value>
 - <DateOfBirth>1986-05-31</DateOfBirth> <Gender>F</Gender>
 - </Horse>
- dHorse Name="Pegasus"> <Value>3000 </Value> <DateOfBirth>1992-06-23 </DateOfBirth> <Gender>M </Gender> </Horse>
- </Horses>
- </Race>

JSON

- JavaScript Object Notation
- a lightweight data-interchange format
- easy for humans to read and write
- easy for machines to parse and generate

```
"scores": [
    "Away Score": 2,
    "Away Team": "Newcastle",
    "Home_Score": 2,
    "Home Team": "Arsenal"
    "Away Score": 2,
    "Away Team": "Napoli",
    "Home Score": 4,
    "Home Team": "Liverpool'
```

24.4 NOSQL Key-Value Stores

No query language

Key-value stores

- ► focus on
 - high performance,
 - availability, and
 - scalability

Can store

structured, unstructured, or semi-structured data

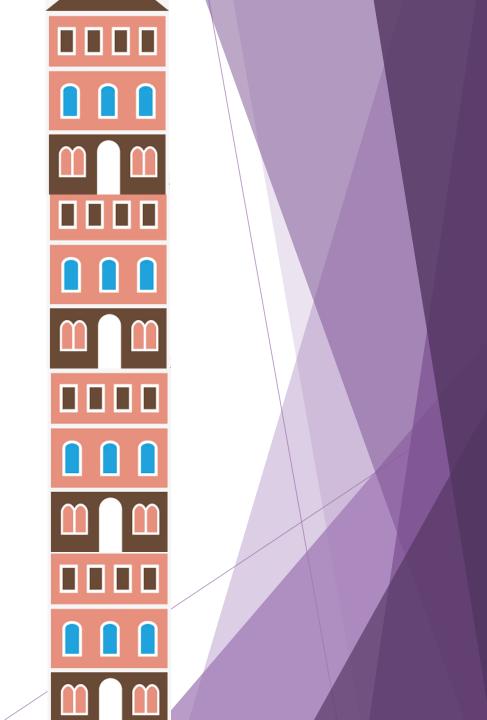
24.4 NOSQL Key-Value Stores

► Key:

- unique identifier
- associated with a data item
- Used for fast retrieval

► Value:

- the data item itself
- Can be string or array of bytes
- Application interprets the structure


Relational Databases

great for

- managing data
- data consistency
- but at a cost
- ► resource intensive
- don't scale well

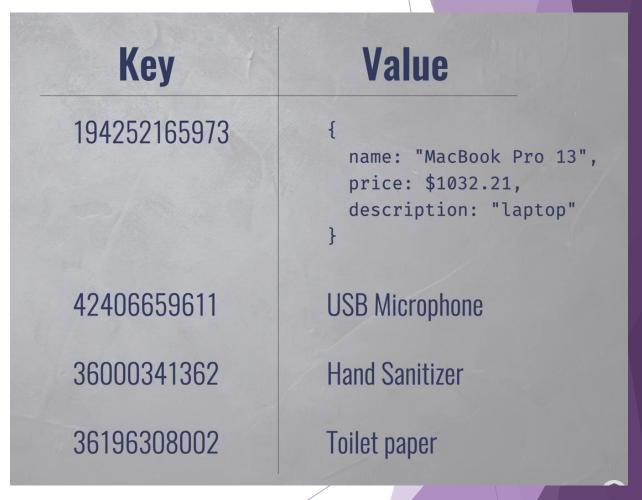
scale

- relational database
 - can scale horizontally

scale

- relational database
 - can scale horizontally
- noSQL
 - can scale horizontally
 - and vertically

why does nosql scale?


data is independent
 remove relationships
 only uses 2 fields
 key - value

Key	Value
194252165973	MacBook Pro 13"
42406659611	USB Microphone
36000341362	Hand Sanitizer
36196308002	Toilet paper

source: https://www.youtube.com/watch?v=0buKQHokLK8

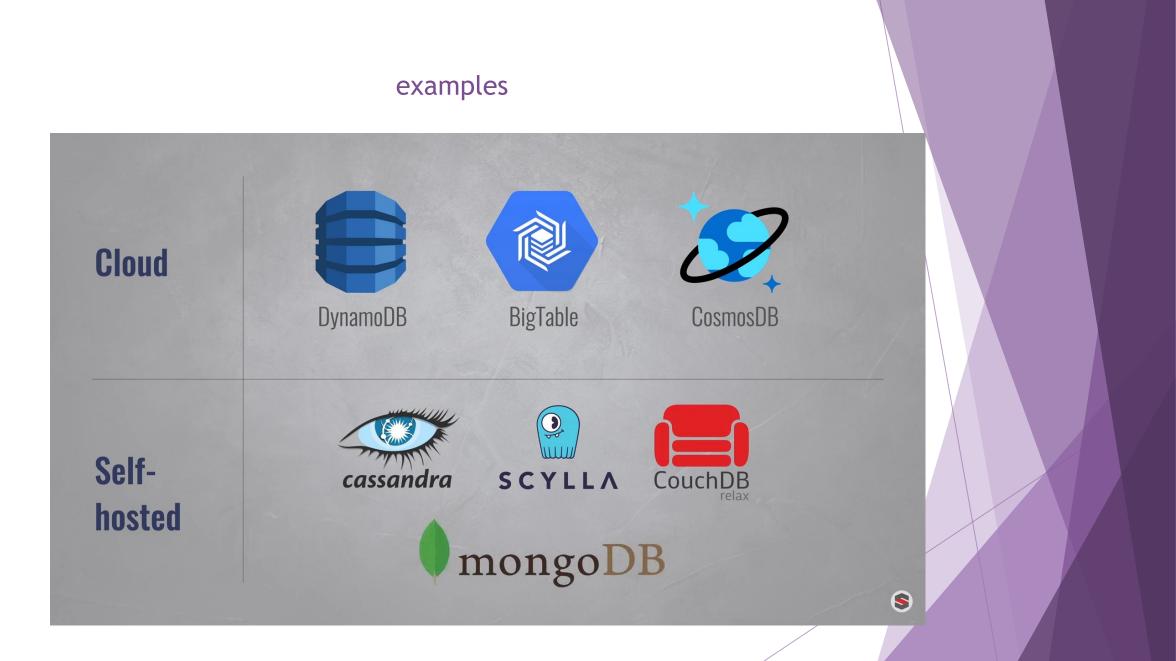
why does nosql scale?

data is independent
remove relationships
only uses 2 fields
key - value
can use JSON

source: https://www.youtube.com/watch?v=0buKQHokLK8

partitions

- ▶ if large quantities of data
- split nosql database over servers
- these are now called partitions
- locate items using a hash value
 - 2 servers split 100 into 2 1-50,51-100
 - ▶ 4 servers split 100 into 4 1-25, 26-50, 51-75, 76-100
 - ▶ 1-100 called a keyspace, can be 0-1000000+
- primary key transformed using a hash function


nosql Databases

advantages

- data is structured in a relational databases
- nosql data is not limited to a structure
- data / database can evolve

disadvantage

- access data only by key
- no query option (efficiently)

source: https://www.youtube.com/watch?v=0buKQHokLK8

noSQL Systems

BigTable (Google)

Column-based or wide column store

DynamoDB (Amazon)

► Key-value data store

Cassandra (Facebook)

Uses concepts from both key-value store and column-based systems noSQL Systems

MongoDB and CouchDB

Document stores

Neo4J and GraphBase

Graph-based NOSQL systems

OrientDB

Combines several concepts

Database systems classified on the object model

Or native XML model

Thank you! any questions?