
Introduction to

Management Information

Systems

Database Design - 2
Data Resource Management

to keep up to date & have access to data & code

https://www.alps.academy/management-information-systems/

Relational

Database Table

implement our design

1. Create Table

2. SQL Select

our task today is to

• create our database

• enter data into our database

• see the data

Preparation

1. Use your ER diagram

2. Data Types

3. Test Data

1. https://sqlitebrowser.org/dl/

2. DB Browser for SQLite - Standard installer for 64-bit

Windows

Database

Database Design

table columns data types notes

student student_id integer primary key

student st_firstname varchar(50)

lecturer staff_id integer primary key

… … …

unit student_id integer foreign key

task #1

Create Table

create table

example create table

• create table

• columns

• data types

• check

• keys

table

start with one table

the following are just examples

create table

CREATE TABLE student (

student_id

class_no

name

mark

);

create table

CREATE TABLE student (

student_id INT,

class_no INT,

name VARCHAR(255),

mark INT

);

•create table

•columns

•data types

create table

CREATE TABLE student (

student_id INT PRIMARY KEY,

class_no INT,

name VARCHAR(255),

mark INT

);

•create table

•columns

•data types

•keys

create table

CREATE TABLE student (

student_id INT PRIMARY KEY,

class_no INT,

name VARCHAR(255),

mark INT CHECK (mark >= 0 AND mark <= 100)

);

•create table

•columns

•data types

•keys

•check

examples of create table

CREATE TABLE customer (

customerid float,

firstname varchar (255),

lastname varchar (255),

city varchar (255),

state varchar (255)

);

examples of create table

CREATE TABLE customer (

customerid float NOT NULL primary key,

firstname varchar (255),

lastname varchar (255) NOT NULL,

city varchar (255),

state varchar (255)

);

examples of create table

CREATE TABLE myemployee (

firstname varchar (30),

lastname varchar (50),

title varchar (30),

age number (3),

salary number (10 , 2)

);

examples of create table

CREATE TABLE myemployee (

ID integer primary key autoincrement,

firstname varchar (30),

lastname varchar (50),

title varchar (30),

age number (3) check (age>=18),

salary number (10 , 2) check (salary >= 10000)

);

examples of create table

CREATE TABLE items_ordered (

orderid integer,

customerid float,

order_date timestamp,

item varchar (255),

quantity float,

price float

);

examples of create table

CREATE TABLE items_ordered (

orderid integer NOT NULL unique primary key,

customerid float,

order_date timestamp,

item varchar (255),

quantity float check (quantity>=18),

price float check (quantity>=0),

FOREIGN KEY (customerid) REFERENCES customers(customerid)

);

create the student & course tables

write your own SQL code to create a table for

1. student

2. course

try it for yourself first – (the idea is to learn not do)

then compare with AI

Database

data entry

enter data

entering data is not important here

• we can copy & paste into sqlite

or

• use AI to create the insert statements

in real life we would automate & import data

Using or querying

Database data

see the data

SQL Select Statements

SQL - DML

what you want to see

from where

which rows

SELECT column

FROM tables(s)

WHERE age > 22

SELECT

FROM

WHERE

select

select student_id, name

from student;

-- Select all columns from the student table

SELECT * FROM student;

-- Select specific columns from the student table

SELECT student_id, student_name FROM student;

select *

select *

from student;

-- Select all columns from the student table

SELECT * FROM student;

-- Select specific columns from the student table

SELECT student_id, student_name FROM student;

order by

select *

from student

order by student_name;

-- Select all students sorted by name in ascending order

SELECT * FROM student ORDER BY student_name ASC;

-- Select all students sorted by name in descending order

SELECT * FROM student ORDER BY student_name DESC;

order by

select *

from student

order by student_name desc;

-- Select all students sorted by name in ascending order

SELECT * FROM student ORDER BY student_name ASC;

-- Select all students sorted by name in descending order

SELECT * FROM student ORDER BY student_name DESC;

where =

select *

from student

where student_id = 652415501

-- Select students with student_id greater than 652415505

SELECT * FROM student WHERE student_id > 652415505;

-- Select courses with course_date equal to '2024-2'

SELECT * FROM course WHERE course_date = '2024-2';

where >

select *

from student

where student_id > 652415501

-- Select students with student_id greater than 652415505

SELECT * FROM student WHERE student_id > 652415505;

-- Select courses with course_date equal to '2024-2'

SELECT * FROM course WHERE course_date = '2024-2';

where =

select *

from course

where course_date = “2024-2”;

-- Select students with student_id greater than 652415505

SELECT * FROM student WHERE student_id > 652415505;

-- Select courses with course_date equal to '2024-2'

SELECT * FROM course WHERE course_date = '2024-2';

like – starts with

select student_id,name

from students

where student_id like '64%‘

-- Select students whose name starts with 'Z'

SELECT * FROM student WHERE student_name LIKE 'Z%';

-- Select courses with names containing 'Management'

SELECT * FROM course WHERE course_name LIKE '%Management%';

like – contains

select *

from course

where course_name LIKE '%Management%';

-- Select students whose name starts with 'Z'

SELECT * FROM student WHERE student_name LIKE 'Z%';

-- Select courses with names containing 'Management'

SELECT * FROM course WHERE course_name LIKE '%Management%';

does this work?

select *

from course

where course_name LIKE '%management%';

-- Select students whose name starts with 'Z'

SELECT * FROM student WHERE student_name LIKE 'Z%';

-- Select courses with names containing 'Management'

SELECT * FROM course WHERE course_name LIKE '%Management%';

alias

select name as new_name

from students

-- Rename column outputs

SELECT student_id AS ID, student_name AS Name FROM student;

alias

select first_name + “ “ + surname as fullname

from students

-- Rename column outputs

SELECT student_id AS ID, student_name AS Name FROM student;

arithmetic operators + - * /

select name, mark, mark*1.1

from students

later - join

-- Use table aliases for shorter references

SELECT s.student_id, s.student_name, r.course_code

FROM student AS s

JOIN registration AS r ON s.student_id = r.student_id;

multiple table

is the design ok ?

test data will tell you (keep a copy!)

normalization

• address – 1 field or more

• contact details = myemail@gmail.com, 012345678

• should be email, phone

consider

mailto:myemail@gmail.com

consider

constraints – check, mark 0 to 100

insert, update , delete

look at the code for the foreign key

can you do this for student & course, how?

Thank you!
any questions?

