Introduction to Management Information Systems

Network Security

Telecommunications and Networks

Learning objectives

identify the need and technology behind network security

Network Security

principles :

encryption = cryptography

CIA

- confidentiality
- ▶ integrity
- authentication

in practice:

firewalls and intrusion detection systems

security in application, transport, network, link layers

What is network security?

Confidentiality: only sender, intended receiver should "understand" message contents

sender encrypts / receiver decrypts message

Integrity:

 sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

Authentication:

sender, receiver want to confirm identity of each other

Non-repudiation:

Proof of sender such as signature, if denied

Access and availability:

services must be accessible and available to users

Message Authentication Code (MAC)

- Verifies message integrity
- No encryption !
- Shared secret is called the authentication key
- Notation: $MD_m = H(s | | m)$; send $m | | MD_m$

encryption

substitution cipher: substituting one thing for another

monoalphabetic cipher: substitute one letter for another

plaintext:	abcdefghijklmnopqrstuvwxyz					
ciphertext:	mnbvcxzasdfqhjklpoiuytrew	, ד				

e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric) key: K

e.g. key is knowing pattern substitution cipher

<u>Q:</u> how do Bob and Alice agree on key value?

Public key encryption algorithms

Requirements:

1 need K_B^{\dagger}) and K_B^{\dagger} () such that $K_B^{-}(K_B^{+}(m)) = m$

```
2 given public key K<sup>+</sup><sub>B</sub>, it should
be impossible to compute
private key K<sup>-</sup><sub>B</sub>
Example:
```

RSA: Rivest, Shamir, Adelson algorithm

Digital Signatures

Bob signs message m by encrypting with his private key K_B , creating "signed" message, $K_B(m)$

Decrypted using his public key

Denial of Service (DoS)

attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

1. select target

- 2. break into hosts around the network (see botnet)
- 3. send packets to target from compromised hosts

packet sniffing

broadcast media (shared Ethernet, wireless)

promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

IP spoofing

send packet with false source address

Network Connection Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap 1.0: Alice says "I am Alice"

Failure scenario??

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap 1.0: Alice says "I am Alice"

in a network, Bob can not "see" Alice, so Trudy simply declares herself to be Alice

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Goal: avoid playback attack nonce: number (R) used only once-in-a-lifetime ap4.0: to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Authentication: ap5.0

ap4.0 requires shared symmetric key

can we authenticate using public key techniques?
 ap5.0: use nonce, public key cryptography

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

difficult to detect:

- Bob receives everything that Alice sends, and vice versa. (e.g., so Bob, Alice can meet one week later and recall conversation!)
- problem is that Trudy receives all messages as well!

Personal Authentication

- What the user *knows*
 - Userid and password
 - Userid and PIN
- What the user has
 - Smart card
 - Token
- What the user is
 - Biometrics (fingerprint, handwriting, voice, etc.)

Firewalls

isolates organization's internal net from larger Internet, allowing some packets to pass, blocking others

Firewalls:

Three types of firewalls:

- 1. stateless (traditional) packet filters
- 2. stateful filters
- 3. application gateways

Access Control Lists

Firewall rules are implemented in routers with access control lists

- A table of rules, applied top to bottom to incoming packets:
- action, condition pairs

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	ТСР	> 1023	80	any
allow	outside of 222.22/16	222.22/16	ТСР	80	> 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	alt	all

Limitations of firewalls and gateways

- if multiple app's. need special treatment, each has own app. Gateway
- IP spoofing router can't know if data "really" comes from claimed source
- client software must know how to contact gateway.
 - e.g., must set IP address of proxy in Web browser

- Web server & web cache act as app gateways
- filters often use all or nothing policy for UDP.
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks.

Intrusion systems

packet filtering:

- operates on TCP/IP headers only
- no correlation check among sessions
- **IDS:** intrusion detection system

A devise that generates alerts when there are suspicious packets

- IPS: intrusion prevention system
 - A devise that filters out suspicious packets

Intrusion detection systems (IDS)

- 1. Signature-based systems
 - Uses a database of signatures
- 2. Anomaly-based systems
 - Compares packets to a traffic profile
- deep packet inspection:
 - look at packet contents
 - check character strings in packet against database of known viruses
- examine correlation among multiple packets
 - port scanning, network mapping, DoS attack

Intrusion detection systems

IDS: intrusion detection system

- deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
- examine correlation among multiple packets
 - port scanning
 - network mapping
 - DoS attack
- 1. Signature-based systems
 - Uses a database of signatures
- 2. Anomaly-based systems
 - Compares packets to a traffic profile

Intrusion detection systems

 multiple IDSs: different types of checking at different locations

Virtual Private Networks (VPNs)

- Institutions often want private networks for security.
 - Costly! Separate routers, links, DNS infrastructure.
- With a VPN, institution's inter-office traffic is sent over public Internet instead.
 - But inter-office traffic is encrypted before entering public Internet

Virtual Private Network (VPN)

Thank you! any questions?